1,139 research outputs found

    Switching magnetic vortex core by a single nanosecond current pulse

    Full text link
    In a ferromagnetic nanodisk, the magnetization tends to swirl around in the plane of the disk and can point either up or down at the center of this magnetic vortex. This binary state can be useful for information storage. It is demonstrated that a single nanosecond current pulse can switch the core polarity. This method also provides the precise control of the core direction, which constitutes fundamental technology for realizing a vortex core memory.Comment: 13 pages, 4 figure

    Cosmic R-string, R-tube and Vacuum Instability

    Full text link
    We show that a cosmic string associated with spontaneous U(1)RU(1)_R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.Comment: 28 pages, 17 figures, v2: references added, improved arguments in sec 3.5.

    Power of Quantum Computation with Few Clean Qubits

    Get PDF
    This paper investigates the power of polynomial-time quantum computation in which only a very limited number of qubits are initially clean in the |0> state, and all the remaining qubits are initially in the totally mixed state. No initializations of qubits are allowed during the computation, nor intermediate measurements. The main results of this paper are unexpectedly strong error-reducible properties of such quantum computations. It is proved that any problem solvable by a polynomial-time quantum computation with one-sided bounded error that uses logarithmically many clean qubits can also be solvable with exponentially small one-sided error using just two clean qubits, and with polynomially small one-sided error using just one clean qubit. It is further proved in the case of two-sided bounded error that any problem solvable by such a computation with a constant gap between completeness and soundness using logarithmically many clean qubits can also be solvable with exponentially small two-sided error using just two clean qubits. If only one clean qubit is available, the problem is again still solvable with exponentially small error in one of the completeness and soundness and polynomially small error in the other. As an immediate consequence of the above result for the two-sided-error case, it follows that the TRACE ESTIMATION problem defined with fixed constant threshold parameters is complete for the classes of problems solvable by polynomial-time quantum computations with completeness 2/3 and soundness 1/3 using logarithmically many clean qubits and just one clean qubit. The techniques used for proving the error-reduction results may be of independent interest in themselves, and one of the technical tools can also be used to show the hardness of weak classical simulations of one-clean-qubit computations (i.e., DQC1 computations).Comment: 44 pages + cover page; the results in Section 8 are overlapping with the main results in arXiv:1409.677

    Revisiting the Effect of Branch Handling Strategies on Change Recommendation

    Full text link
    Although literature has noted the effects of branch handling strategies on change recommendation based on evolutionary coupling, they have been tested in a limited experimental setting. Additionally, the branches characteristics that lead to these effects have not been investigated. In this study, we revisited the investigation conducted by Kovalenko et al. on the effect to change recommendation using two different branch handling strategies: including changesets from commits on a branch and excluding them. In addition to the setting by Kovalenko et al., we introduced another setting to compare: extracting a changeset for a branch from a merge commit at once. We compared the change recommendation results and the similarity of the extracted co-changes to those in the future obtained using two strategies through 30 open-source software systems. The results show that handling commits on a branch separately is often more appropriate in change recommendation, although the comparison in an additional setting resulted in a balanced performance among the branch handling strategies. Additionally, we found that the merge commit size and the branch length positively influence the change recommendation results.Comment: 11 pages, ICPC 202
    • …
    corecore